**WP-2** 

# **Statistical Sampling in a Production Process**

# "A Practical Guide to Statistical Sampling"

# A White Paper

by

David C. Wilson, MSEE Wilson Consulting Services, LLC December 23, 2004

#### ABSTRACT

This paper provides practical exercises for determining statistical sampling. The intended audiences are manufacturing, quality, receiving, and test engineering interested in how to determine a reasonable statistical sampling plan. This information is being provided as a result of the author's analyzing production inspection data from a manufacturing facility.

The paper presents several scenarios and examples on determining a sampling plan using real production data from the Northford Plant Facility.

The lot size, N, the sample size, n, and the acceptance number, c, uniquely determine a sampling plan. When N is large, inferential statistics is most widely used as in this case, uniquely n and c. The simplest way is to get n and c for a given percent defectives and matching alpha and beta risks. There are many computer programs that will do the calculations. The introduction section in this paper defines the various mathematical methods used to determine sample size, defectives, probabilities, etc.

## **Table of Contents**

| <b>Description</b>                        | Page    |
|-------------------------------------------|---------|
| 1.0: Introduction                         | 4 - 25  |
| 2.0: Summary                              | 6 - 25  |
| 3.0: QA Data                              | 8 - 25  |
| 4.0: Lot Size versus Acceptance           | 12 - 25 |
| 5.0: Operating Characteristic (OC) Curves | 23 - 25 |

## **1.0: Introduction**

#### **Objective:**

To determine the outputs of various statistical methods in order to develop statistical inspection sampling plans for various manufacturing process steps.

#### **Information Source**

- March and April 2003 Monthly Production Quality Reports
- April 2002 Monthly Production Quality Report

#### **Analysis Resources:**

- Mintab
- Excel
- Distribution tables

#### **Statistical Methodologies**

- Binomial distribution
- Poisson Distribution
- Exact method to the binomial distribution

Note: This paper was first drafted in May 5, 2003. Extensive revisions have been made since that time.

**Reference:** Applied Reliability by Paul A. Tobias & David C. Trindade, Publisher: Chapman & Hall/CRC, Second Edition, 1995.

Wilson Consulting Services, LLC

Introduction

# Introduction – cont'd

## continued

## **Cumulative Binomial Model**

The binomial distribution is a special case of a discrete distribution.

- 1. It has only two outcomes are possible, e.g.. pass/fail go/no go, etc.
- 2. There are a fixed number of (n) trials.
- 3. There exist a fixed number of probability, p, of success from trial to trial.
- 4. The outcomes are independent from trial to trial.

$$P(X \le x) = \sum_{x=0}^{c} {n \choose x} p^{x} (1-p)^{n-x}$$

### **Cumulative Poisson Model**

The Poisson distribution is a special case of a discrete distribution.

- 1. It has only two outcomes are possible, e.g.. failures in a given time or defects in a length of wire, wafers, etc.
- 2. The outcomes are independent from trial to trial.
- 3. Can be considered an extension of the binomial when n is large.
- 4. It provides a good approximation to the bimanual distribution, when p or q is small and n is large (Definition of small p (i.e., p < 0.10), where  $\lambda$  is the average failure rate ( $\lambda = np$ )

$$P(X \le x) = \sum_{x=0}^{c} \frac{\lambda^{x} e^{-\lambda}}{x!}, x = 0, 1, 2, ...,$$

# 2.0 Summary

## I. Production Data

#### **Binomial distribution**

In this paper binomial probabilities were developed for several process steps in response to an inquiry To the author on how to audit and/or sampling various process steps rather do a 100% inspection at each step in the process. A 95% confidence bound was used, which means that a sample of products that Indicates a probability that exceeds 0.95 would be rejected and require a 100% inspection. These tables are not a final version, rather they have been generated to provoke a thoughtful discussion on how to come-up with a sampling plan that will satisfy the process steps. It is important to minimize Types I ( $\alpha$ ) and Type II ( $\beta$ ) errors.

For example: Table 1, sample size n = 1000 and p = 0.0006, which has a 0.06% defective rate. The 0.06% is a historic monthly failure rate. If the assumption that an acceptance "c" such that at least 95% of the time a lot is accepted if the true percent defective level is 0.06% or less. Therefore, the risk of Type I error ( $\alpha$ ) is 5%. The cumulative binomial probabilities for 0, 1, 2, 3, etc., up to "c" failures, for n = 1000 and p = 0.0006 are associated with the probability of getting "c" or less exceeds 95% or 0.95. This means that 95% of the time, the lot with the historic 0.06% defectives or less will be accepted because"c" failures or less are expected 95% for a sample size n drawn from a large lot with this historic failure rate. For n = 1000, the the number of acceptable defects is 1 or less as shown in table 1.

## continued

## **II. Operating Characteristic (OC) Curves**

The OC curves provide a given sample size and acceptance number. The percent defective proportion value are read from the inside of the table at the intersection of the probability of acceptance and sample size. For example, c = 3 failures has probability of acceptance of 0.80 or 80% and a defective rate of 4.63% for n = 50. See Tables 14 & figure 1. Please note that the higher the probability of acceptance the smaller the defect rate.

# From April 2003 - QA Report

# 3.0 QA Data

Example from April Monthly Quality Report

See Sampling Tables for acceptance/rejection of a lot.

## **Process Steps:**

## Automatic SMT (1st Piece / Audits)

| Description                   | April 2003 | March 2003 | April 2002 |
|-------------------------------|------------|------------|------------|
| <b>Total Pieces Inspected</b> | 9881       | 15,245     | 11678      |
| <b>Total Pieces Rejected</b>  | 7          | 10         | 5          |

## **Pre-Wave Inspection (1st Piece)**

| Description            | April 2003 | March 2003 | April 2002 |
|------------------------|------------|------------|------------|
| Total Pieces Inspected | 334        | 578        | 447        |
| Total Pieces Rejected  | 5          | 9          | 4          |

### **Post-Wave Inspection**

| Description            | April 2003 | March 2003 | April 2002                      |
|------------------------|------------|------------|---------------------------------|
| Total Pieces Inspected | 316        | 564        | 585                             |
| Total Pieces Rejected  | 6          | 9          | 13                              |
|                        |            |            | Wilson Consulting Services, LLC |

Page 8-25

# From April 2003 - QA Report

Example from April 2003 Monthly Quality Report - cont'd

## **Process Steps (continued)**

| Functional                     |            |            |                                 |
|--------------------------------|------------|------------|---------------------------------|
| Description                    | April 2003 | March 2003 | April 2002                      |
| <b>Total Pieces Inspected</b>  | 5951       | 9289       | 11,686                          |
| <b>Total Pieces Rejected</b>   | 109        | 186        | 217                             |
|                                |            |            |                                 |
| Pre-Post Burn-in               |            |            |                                 |
| Description                    | April 2003 | March 2003 | April 2002                      |
| <b>Total Pieces Inspected</b>  | 1,100      | 1309       | 5258                            |
| <b>Total Pieces Rejected</b>   | 54         | 31         | 54                              |
|                                |            |            |                                 |
| <b>Final Visual Inspection</b> |            |            |                                 |
| Description                    | April 2003 | March 2003 | April 2002                      |
| <b>Total Pieces Inspected</b>  | 8261       | 10,801     | 8,898                           |
| <b>Total Pieces Rejected</b>   | 70         | 124        | 130                             |
|                                |            |            | Wilson Consulting Services, LLC |

## From April 2003 - QA Report

Example from April 2003 Monthly Quality Report - cont'd

## **Process Steps (continued)**

| Finished Goods Audit (Post -Pack) |            |            |                                |  |
|-----------------------------------|------------|------------|--------------------------------|--|
| Description                       | April 2003 | March 2003 | April 2002                     |  |
| Total Pieces Inspected            | 44         | 154        | 373                            |  |
| Total Pieces Rejected             | 6          | 1          | 8                              |  |
| Metal Fabrication                 |            |            |                                |  |
| Description                       | April 2003 | March 2003 | April 2002                     |  |
| Total Pieces Inspected            | 621        | 735        | 605                            |  |
| Total Pieces Rejected             | 5          | 11         | 2                              |  |
| Shipping Audits                   |            |            |                                |  |
| Description                       | April 2003 | March 2003 | April 2002                     |  |
| Total Pieces Inspected            | 366        | 559        | 605                            |  |
| Total Pieces Rejected             | 1          | 3          | 10                             |  |
| -                                 |            |            | Wilson Consulting Services, LL |  |

## From April 2003 - QA Report

Example from April 2003 Monthly Quality Report - cont'd

Process Steps (continued)

## **Stockroom Audits**

| Description            | April 2003 | March 2003 | April 2002 |
|------------------------|------------|------------|------------|
| Total Pieces Inspected | 677        | 762        | 163        |
| Total Pieces Rejected  | 17         | 17         | 10         |

# Lot Size vs. Acceptance

**4.0 Lot Size vs. Acceptance** For a lot to be acceptable, the probability of 'c' occurring must be equal or less than

0.95. The historic proportion was determined by the average of the three months of

defective data.

## **Sampling Tables**

| <b>Process Step Auto SMT</b><br><i>n</i> = 1000 and <i>p</i> = 0.0006 |              |   | Step Auto SMT and $p = 0.0006$ |
|-----------------------------------------------------------------------|--------------|---|--------------------------------|
| с                                                                     | $P(X \le c)$ | С | $P(X \le c)$                   |
| 5                                                                     | 0.99996      | 5 | 0.98965                        |
| 4                                                                     | 0.99961      | 4 | 0.96364                        |
| 3                                                                     | 0.99666      | 3 | 0.89135                        |
| 2                                                                     | 0.97693      | 2 | 0.73064                        |
| 1                                                                     | 0.87814      | 1 | 0.46277                        |
| 0                                                                     | 0.54871      | 0 | 0.16521                        |

Table 1

|   | ss Step Auto SMT<br>00 and p = 0.0006 |          | Step Auto SM $and p = 0.0006$ | ЛТ                             |
|---|---------------------------------------|----------|-------------------------------|--------------------------------|
| с | $P(X \le c)$                          | <i>C</i> | $P(X \le c)$                  |                                |
| 5 | 0.99851                               | 5        | 0.91614                       |                                |
| 4 | 0.99228                               | 4        | 0.81531                       |                                |
| 3 | 0.96628                               | 3        | 0.64723                       |                                |
| 2 | 0.87954                               | 2        | 0.42312                       |                                |
| 1 | 0.66261                               | 1        | 0.19906                       |                                |
| 0 | 0.30109                               | 0        | 0.04974                       |                                |
|   | Tab                                   | ole 2    |                               | Wilson Consulting Services, LL |

## **Sampling Tables – cont'd**

## **Derived from the Poisson Model**

| <b>Proce</b> $\lambda = 0$ | ss Step Auto SM<br>9.6 | T       | Process S $\lambda = 1.8$ | Step Auto SMT |
|----------------------------|------------------------|---------|---------------------------|---------------|
| С                          | $P(X \le c)$           |         | С                         | $P(X \le c)$  |
| 5                          | 0.99996                |         | 5                         | 0.98962       |
| 4                          | 0.99961                |         | 4                         | 0.96359       |
| 3                          | 0.99664                |         | 3                         | 0.89129       |
| 2                          | 0.97689                |         | 2                         | 0.73062       |
| 1                          | 0.87810                |         | 1                         | 0.46284       |
| 0                          | 0.54881                |         | 0                         | 0.16530       |
|                            |                        | Tabla 3 |                           |               |

This is the only page, which used the Poisson distribution in its Probabilistic Tables, all others estimates used binomial distributions.

Table 3

| <b>Proce</b> $\lambda = 1$ | ss Step Auto SMT<br>.2 | Process S<br>$\lambda = 3.0$ | tep Auto SMT |
|----------------------------|------------------------|------------------------------|--------------|
| c                          | $P(X \le c)$           | <u> </u>                     | $P(X \le c)$ |
| 5                          | 0.99850                | 5                            | 0.91608      |
| 4                          | 0.99225                | 4                            | 0.81526      |
| 3                          | 0.96623                | 3                            | 0.64723      |
| 2                          | 0.87949                | 2                            | 0.42319      |
| 1                          | 0.66263                | 1                            | 0.19915      |
| 0                          | 0.30119                | 0                            | 0.04979      |

Table 4

## **Pre-wave inspection – sampling tables**

| n = 100 | ave Inspection (1st Piece)<br>p = 0.013<br>$P(X \le c)$ | n = 300  and  p = 0.013<br>$P(X \le c)$ |          |
|---------|---------------------------------------------------------|-----------------------------------------|----------|
| С       |                                                         | <u> </u>                                |          |
| 9       | 1.00000                                                 | 9                                       | 0.99349  |
| 8       | 0.99999                                                 | 8                                       | 0.98218  |
| 7       | 0.99995                                                 | 7                                       | 0.95571  |
| 6       | 0.99965                                                 | 6                                       | 0.90085  |
| 5       | 0.99797                                                 | 5                                       | 0.80166  |
| 4       | 0.98990                                                 | 4                                       | 0.64850  |
| 3       | 0.9580                                                  | 3                                       | 0.452068 |
| 2       | 0.8582                                                  | 2                                       | 0.251213 |
| 1       | 0.6261                                                  | 1                                       | 0.097695 |
| 0       | 0.2702 Table 5                                          | 0                                       | 0.019731 |

| Pre-W                   | Pre-Wave Inspection (1st Piece) |               | Pre-Wave Inspection (1st Piece) |                                 |  |  |  |
|-------------------------|---------------------------------|---------------|---------------------------------|---------------------------------|--|--|--|
| n = 200  and  p = 0.013 |                                 | $n = 400 \ a$ | and $p = 0.013$                 |                                 |  |  |  |
| С                       | $P(X \le c)$                    | <i>C</i>      | $P(X \le c)$                    |                                 |  |  |  |
| 9                       | 0.99967                         | 9             | 0.96137                         |                                 |  |  |  |
| 8                       | 0.99865                         | 8             | 0.91941                         |                                 |  |  |  |
| 7                       | 0.99500                         | 7             | 0.84625                         |                                 |  |  |  |
| 6                       | 0.98353                         | 6             | 0.73319                         |                                 |  |  |  |
| 5                       | 0.95212                         | 5             | 0.58069                         |                                 |  |  |  |
| 4                       | 0.87872                         | 4             | 0.40481                         |                                 |  |  |  |
| 3                       | 0.7366                          | 3             | 0.236206                        |                                 |  |  |  |
| 2                       | 0.5174                          | 2             | 0.107232                        |                                 |  |  |  |
| 1                       | 0.265366                        | 1             | 0.033421                        |                                 |  |  |  |
| 0                       | 0.073018                        | 0             | 0.005332                        |                                 |  |  |  |
|                         | Table                           | 6             |                                 | Wilson Consulting Services, LLC |  |  |  |

## **Post-wave inspection**

| Post-\ | Nave Inspection $0 \text{ and } p = 0.019$ | Post-Wave Inspection $n = 300$ and $p = 0.019$ |              |  |
|--------|--------------------------------------------|------------------------------------------------|--------------|--|
| С      | $P(X \le c)$                               | <u> </u>                                       | $P(X \le c)$ |  |
| 9      | 0.99998                                    | 9                                              | 0.93703      |  |
| 8      | 0.99987                                    | 8                                              | 0.87866      |  |
| 7      | 0.99933                                    | 7                                              | 0.78578      |  |
| 6      | 0.99693                                    | 6                                              | 0.65483      |  |
| 5      | 0.98769                                    | 5                                              | 0.49386      |  |
| 4      | 0.95755                                    | 4                                              | 0.32481      |  |
| 3      | 0.8765                                     | 3                                              | 0.177381     |  |
| 2      | 0.7040                                     | 2                                              | 0.07486      |  |
| 1      | 0.4313                                     | 1                                              | 0.021571     |  |
| 0      | 0.1469                                     | 0                                              | 0.003167     |  |

#### Table 7

| Post-Wave Inspection $n = 200$ and $p = 0.013$ |              |         | <b>Post-Wave Inspection</b><br>n = 400 and $p = 0.019$ |              |                                |
|------------------------------------------------|--------------|---------|--------------------------------------------------------|--------------|--------------------------------|
| с                                              | $P(X \le c)$ |         | С                                                      | $P(X \le c)$ |                                |
| 9                                              | 0.99470      |         | 9                                                      | 0.76643      |                                |
| 8                                              | 0.98497      |         | 8                                                      | 0.64873      |                                |
| 7                                              | 0.96144      |         | 7                                                      | 0.50921      |                                |
| 6                                              | 0.91109      |         | 6                                                      | 0.36256      |                                |
| 5                                              | 0.81727      |         | 5                                                      | 0.22805      |                                |
| 4                                              | 0.66823      |         | 4                                                      | 0.12255      |                                |
| 3                                              | 0.4719       |         | 3                                                      | 0.053772     |                                |
| 2                                              | 0.2661       |         | 2                                                      | 0.017993     |                                |
| 1                                              | 0.105112     |         | 1                                                      | 0.004069     |                                |
| 0                                              | 0.021568     | Table 8 | 0                                                      | 0.000465     | Wilson Consulting Services, LL |

## **Functional Test**

| Functional |                   |  |  |  |  |  |
|------------|-------------------|--|--|--|--|--|
| n = 300    | 0  and  p = 0.019 |  |  |  |  |  |
| С          | $P(X \le c)$      |  |  |  |  |  |
| 200        | 1.00000           |  |  |  |  |  |
| 175        | 1.00000           |  |  |  |  |  |
| 150        | 1.00000           |  |  |  |  |  |
| 125        | 1.00000           |  |  |  |  |  |
| 100        | 1.00000           |  |  |  |  |  |
| 90         | 0.99998           |  |  |  |  |  |
| 60         | 0.6861            |  |  |  |  |  |
| 50         | 0.1937            |  |  |  |  |  |
| 40         | 0.0106            |  |  |  |  |  |
| 0          | 0.0000            |  |  |  |  |  |

| Functional |                          |  |  |  |  |  |
|------------|--------------------------|--|--|--|--|--|
| n = 7000 a | n = 7000 and $p = 0.019$ |  |  |  |  |  |
| с          | $P(X \le c)$             |  |  |  |  |  |
| 200        | 1.00000                  |  |  |  |  |  |
| 175        | 0.99982                  |  |  |  |  |  |
| 150        | 0.93506                  |  |  |  |  |  |
| 125        | 0.25830                  |  |  |  |  |  |
| 100        | 0.00155                  |  |  |  |  |  |
| 90         | 0.00004                  |  |  |  |  |  |
| 60         | 0.00000                  |  |  |  |  |  |
| 50         | 0.00000                  |  |  |  |  |  |
| 40         | 0.00000                  |  |  |  |  |  |
| 0          | 0.00000                  |  |  |  |  |  |

Table 9

| Functi                   | onal         |          | Functior | nal                         |           |
|--------------------------|--------------|----------|----------|-----------------------------|-----------|
| n = 5000 and $p = 0.019$ |              |          | n = 9000 | and $p = 0.019$             | p = 0.019 |
| С                        | $P(X \le c)$ |          | <u> </u> | $P(X \le c)$                |           |
| 200                      | 1.00000      |          | 200      | 0.98712                     |           |
| 175                      | 1.00000      |          | 175      | 0.63994                     |           |
| 150                      | 1.00000      |          | 150      | 0.05449                     |           |
| 125                      | 0.99877      |          | 125      | 0.00012                     |           |
| 100                      | 0.71936      |          | 100      | 0.00000                     |           |
| 90                       | 0.32526      |          | 90       | 0.00000                     |           |
| 60                       | 0.0001       |          | 60       | 0.00000                     |           |
| 50                       | 0.0000       |          | 50       | 0.00000                     |           |
| 40                       | 0.0000       |          | 40       | 0.00000                     |           |
| 0                        | 0.0000       | Table 10 | 0        | 0.00000                     |           |
|                          |              |          |          | Wilson Consulting Services, | LL        |

| Pre- / Post Burn- | in<br>Pre / F | Post Burn-in    | Pre /    |
|-------------------|---------------|-----------------|----------|
|                   |               | 0 and p = 0.028 | n =10    |
|                   | c             | $P(X \le c)$    | <u> </u> |
|                   | 50            | 1.00000         | 50       |
|                   | 45            | 1.00000         | 45       |
|                   | 40            | 1.00000         | 40       |
|                   | 35            | 1.00000         | 35       |
|                   | 30            | 0.99996         | 30       |
|                   | 25            | 0.99775         | 25       |
|                   | 20            | 0.9545          | 20       |
|                   | 15            | 0.6708          | 15       |
|                   | 10            | 0.1719          | 10       |
|                   | 0             | 0.0000          | 0        |
|                   |               |                 | Table 11 |
|                   | Pre / F       | Post Burn-in    | Pre /    |
|                   | n = 800       | 0 and p = 0.028 | n = 12   |
|                   | с             | $P(X \le c)$    | C        |
|                   | 50            | 1.00000         | 50       |
|                   | 45            | 0.99999         | 45       |
|                   | 40            | 0.99979         | 40       |
|                   | 35            | 0.99563         | 35       |
|                   | 30            | 0.95344         | 30       |
|                   | 25            | 0.75282         | 25       |
|                   | 20            | 0.3525          | 20       |
|                   | 15            | 0.0633          | 15       |

| Pre / Post Burn-in |                 |  |  |  |  |
|--------------------|-----------------|--|--|--|--|
| n =1000 d          | and $p = 0.028$ |  |  |  |  |
| с                  | $P(X \le c)$    |  |  |  |  |
| 50                 | 0.99995         |  |  |  |  |
| 45                 | 0.99906         |  |  |  |  |
| 40                 | 0.98862         |  |  |  |  |
| 35                 | 0.92079         |  |  |  |  |
| 30                 | 0.69229         |  |  |  |  |
| 25                 | 0.32434         |  |  |  |  |
| 20                 | 0.06994         |  |  |  |  |
| 15                 | 0.00495         |  |  |  |  |
| 10                 | 0.00007         |  |  |  |  |
| 0                  | 0.00000         |  |  |  |  |

| Pre / Post Burn-in |                         | ost Burn-in  |          | Pre / Po                 | st Burn-in              |                                 |
|--------------------|-------------------------|--------------|----------|--------------------------|-------------------------|---------------------------------|
|                    | n = 800 and $p = 0.028$ |              |          | n = 1200 and $p = 0.028$ |                         | 8                               |
|                    | c                       | $P(X \le c)$ |          | c                        | $\overline{P}(X \le c)$ |                                 |
|                    | 50                      | 1.00000      |          | 50                       | 0.99730                 | _                               |
|                    | 45                      | 0.99999      |          | 45                       | 0.97746                 |                                 |
|                    | 40                      | 0.99979      |          | 40                       | 0.88436                 |                                 |
|                    | 35                      | 0.99563      |          | 35                       | 0.63940                 |                                 |
|                    | 30                      | 0.95344      |          | 30                       | 0.30057                 |                                 |
|                    | 25                      | 0.75282      |          | 25                       | 0.07351                 |                                 |
|                    | 20                      | 0.3525       |          | 20                       | 0.00740                 |                                 |
|                    | 15                      | 0.0633       |          | 15                       | 0.00023                 |                                 |
|                    | 10                      | 0.00254      |          | 10                       | 0.00000                 |                                 |
|                    | 0                       | 0.00000      | Table 12 | 0                        | 0.00000                 |                                 |
|                    |                         |              |          |                          |                         | Wilson Consulting Services, LLC |

#### **Final Visual Inspection**

| Final Visual Inspection<br>n = 5000 and $p = 0.011$ |              |  |  |  |  |  |  |
|-----------------------------------------------------|--------------|--|--|--|--|--|--|
| С                                                   | $P(X \le c)$ |  |  |  |  |  |  |
| 120                                                 | 1.00000      |  |  |  |  |  |  |
| 100                                                 | 1.00000      |  |  |  |  |  |  |
| 80                                                  | 0.99943      |  |  |  |  |  |  |
| 70                                                  | 0.97908      |  |  |  |  |  |  |
| 65                                                  | 0.91978      |  |  |  |  |  |  |
| 60                                                  | 0.77509      |  |  |  |  |  |  |
| 50                                                  | 0.2755       |  |  |  |  |  |  |
| 40                                                  | 0.0207       |  |  |  |  |  |  |
| 20                                                  | 0.0000       |  |  |  |  |  |  |
| 10                                                  | 0.0000       |  |  |  |  |  |  |
|                                                     | <b>T</b> - 1 |  |  |  |  |  |  |

| <b>Final Visual Inspection</b> |  |  |  |  |  |
|--------------------------------|--|--|--|--|--|
| p = 0.011                      |  |  |  |  |  |
| $P(X \le c)$                   |  |  |  |  |  |
| 0.98288                        |  |  |  |  |  |
| 0.56658                        |  |  |  |  |  |
| 0.02774                        |  |  |  |  |  |
| 0.00127                        |  |  |  |  |  |
| 0.00017                        |  |  |  |  |  |
| 0.00002                        |  |  |  |  |  |
| 0.00000                        |  |  |  |  |  |
| 0.00000                        |  |  |  |  |  |
| 0.00000                        |  |  |  |  |  |
| 0.00000                        |  |  |  |  |  |
|                                |  |  |  |  |  |

Table 13

| Final V | Final Visual Inspection<br>n = 8000 and $p = 0.011$ |          | Final Vis                 | ual Inspection |                                 |
|---------|-----------------------------------------------------|----------|---------------------------|----------------|---------------------------------|
| n = 800 |                                                     |          | n = 10000 and $p = 0.011$ |                |                                 |
| C       | $P(X \le c)$                                        |          | <u> </u>                  | $P(X \le c)$   |                                 |
| 120     | 0.99954                                             |          | 120                       | 0.84300        |                                 |
| 100     | 0.90780                                             |          | 100                       | 0.18184        |                                 |
| 80      | 0.21247                                             |          | 80                        | 0.00157        |                                 |
| 70      | 0.02712                                             |          | 70                        | 0.00003        |                                 |
| 65      | 0.00608                                             |          | 65                        | 0.00000        |                                 |
| 60      | 0.00095                                             |          | 60                        | 0.00000        |                                 |
| 50      | 0.00001                                             |          | 50                        | 0.00000        |                                 |
| 40      | 0.00000                                             |          | 40                        | 0.00000        |                                 |
| 20      | 0.00000                                             |          | 20                        | 0.00000        |                                 |
| 10      | 0.00000                                             | Table 14 | 10                        | 0.00000        | Wilson Consulting Services, LLC |

WP-2: DCW\_Statistical Sampling in a Production Process 12/23/04

Page 18-25

#### **Finish Goods Audit & Final Inspection (post pack)**

| Finished Goods Audit (post pack)<br>n = 50 and $p = 0.055$ |                  |    | d Goods Audit (post pack)<br>pd p = 0.055 |
|------------------------------------------------------------|------------------|----|-------------------------------------------|
| С                                                          | $P(X \le c)$     | c  | $P(X \le c)$                              |
| 10                                                         | 0.99993          | 10 | 0.97827                                   |
| 9                                                          | 0.99966          | 9  | 0.95130                                   |
| 8                                                          | 0.99852          | 8  | 0.90039                                   |
| 7                                                          | 0.99435          | 7  | 0.81482                                   |
| 6                                                          | 0.98099          | 6  | 0.68834                                   |
| 5                                                          | 0.94449          | 5  | 0.52650                                   |
| 4                                                          | 0.86087          | 4  | 0.35089                                   |
| 3                                                          | 0.70469          | 3  | 0.19374                                   |
| 1                                                          | 0.23109          | 1  | 0.02382                                   |
| 0                                                          | 0.05910          | 0  | 0.00349                                   |
|                                                            | T-1-1-1 <i>5</i> |    |                                           |

Table 15

| Final V | Final Visual Inspection (post pack) |          | Final Visual Inspection (post pack) |              |                                 |  |
|---------|-------------------------------------|----------|-------------------------------------|--------------|---------------------------------|--|
| n = 75  | and $p = 0.055$                     |          | n = 110 a                           | nd p = 0.055 |                                 |  |
| с       | $P(X \le c)$                        |          | С                                   | $P(X \le c)$ | )                               |  |
| 10      | 0.99739                             |          | 10                                  | 0.95997      |                                 |  |
| 9       | 0.99208                             |          | 9                                   | 0.91848      |                                 |  |
| 8       | 0.97825                             |          | 8                                   | 0.84790      |                                 |  |
| 7       | 0.94634                             |          | 7                                   | 0.74089      |                                 |  |
| 6       | 0.88183                             |          | 6                                   | 0.59808      |                                 |  |
| 5       | 0.76939                             |          | 5                                   | 0.43294      |                                 |  |
| 4       | 0.60378                             |          | 4                                   | 0.27079      |                                 |  |
| 3       | 0.40341                             |          | 3                                   | 0.13938      |                                 |  |
| 1       | 0.07708                             |          | 1                                   | 0.01468      |                                 |  |
| 0       | 0.01437                             | Table 16 | 0                                   | 0.00198      | Wilson Consulting Services, LLC |  |

#### **Metal Fabrication**

| Metal Fabrication |  |  |  |  |  |
|-------------------|--|--|--|--|--|
| and $p = 0.0088$  |  |  |  |  |  |
| $P(X \le c)$      |  |  |  |  |  |
| 1.00000           |  |  |  |  |  |
| 1.00000           |  |  |  |  |  |
| 1.00000           |  |  |  |  |  |
| 1.00000           |  |  |  |  |  |
| 0.99997           |  |  |  |  |  |
| 0.99973           |  |  |  |  |  |
| 0.9980            |  |  |  |  |  |
| 0.9880            |  |  |  |  |  |
| 0.7800            |  |  |  |  |  |
| 0.4132            |  |  |  |  |  |
|                   |  |  |  |  |  |

| Metal Fabrication<br><i>n</i> =400 and <i>p</i> = 0.0088 |              |  |  |  |
|----------------------------------------------------------|--------------|--|--|--|
| С                                                        | $P(X \le c)$ |  |  |  |
| 10                                                       | 0.99900      |  |  |  |
| 9                                                        | 0.99671      |  |  |  |
| 8                                                        | 0.99012      |  |  |  |
| 7                                                        | 0.97309      |  |  |  |
| 6                                                        | 0.93402      |  |  |  |
| 5                                                        | 0.85583      |  |  |  |
| 4                                                        | 0.722067     |  |  |  |
| 3                                                        | 0.531829     |  |  |  |
| 1                                                        | 0.132632     |  |  |  |
| 0                                                        | 0.029142     |  |  |  |

Table 17

| Metal   | Fabrication      |          | Metal Fa  | abrication                                  |  |
|---------|------------------|----------|-----------|---------------------------------------------|--|
| n = 300 | 0 and p = 0.0088 |          | n = 500 a | p = 0.0088                                  |  |
| C       | $P(X \le c)$     |          | <i>c</i>  | $P(X \le c)$                                |  |
| 10      | 1.00000          |          | 10        | 0.99454                                     |  |
| 9       | 0.99999          |          | 9         | 0.98553                                     |  |
| 8       | 0.99992          |          | 8         | 0.96488                                     |  |
| 7       | 0.99955          |          | 7         | 0.92231                                     |  |
| 6       | 0.99786          |          | 6         | 0.84452                                     |  |
| 5       | 0.99097          |          | 5         | 0.72036                                     |  |
| 4       | 0.9671           |          | 4         | 0.550845                                    |  |
| 3       | 0.8985           |          | 3         | 0.358369                                    |  |
| 1       | 0.47383          |          | 1         | 0.065489                                    |  |
| 0       | 0.17071          | Table 18 | 0         | 0.012041<br>Wilson Consulting Services, LLC |  |

Page 20- 25

|    | ing Audits $p = 0.0082$ |          | Sł<br>n : |
|----|-------------------------|----------|-----------|
| с  | $P(X \le c)$            |          |           |
| 10 | 1.00000                 |          |           |
| 9  | 1.00000                 |          |           |
| 8  | 1.00000                 |          |           |
| 7  | 1.00000                 |          |           |
| 6  | 0.99998                 |          |           |
| 5  | 0.99981                 |          |           |
| 4  | 0.99854                 |          |           |
| 3  | 0.99049                 |          |           |
| 2  | 0.95038                 |          |           |
| 1  | 0.80186                 |          |           |
|    |                         | Table 19 |           |

| Shipping Audits $n = 400$ and $p = 0.0082$ |              |  |  |  |  |
|--------------------------------------------|--------------|--|--|--|--|
| n =400 un<br>C                             | $P(X \le c)$ |  |  |  |  |
| 10                                         | 0.99943      |  |  |  |  |
| 9                                          | 0.99800      |  |  |  |  |
| 8                                          | 0.99358      |  |  |  |  |
| 7                                          | 0.98130      |  |  |  |  |
| 6                                          | 0.95108      |  |  |  |  |
| 5                                          | 0.88612      |  |  |  |  |
| 4                                          | 0.76677      |  |  |  |  |
| 3                                          | 0.58451      |  |  |  |  |
| 2                                          | 0.36239      |  |  |  |  |
| 1                                          | 0.15989      |  |  |  |  |

| Shipping Audits<br>n = 300 and $p = 0.0082$ |              | Shippin   | g Audits          |                                      |        |
|---------------------------------------------|--------------|-----------|-------------------|--------------------------------------|--------|
|                                             |              | n = 500 a | $nd \ p = 0.0082$ |                                      |        |
| с                                           | $P(X \le c)$ |           | С                 | $P(X \le c)$                         |        |
| 10                                          | 0.99995      |           | 10                | 0.99674                              |        |
| 9                                           | 0.99978      |           | 9                 | 0.99076                              |        |
| 8                                           | 0.99904      |           | 8                 | 0.97603                              |        |
| 7                                           | 0.99631      |           | 7                 | 0.94345                              |        |
| 6                                           | 0.98728      |           | 6                 | 0.87951                              |        |
| 5                                           | 0.96127      |           | 5                 | 0.76991                              |        |
| 4                                           | 0.89729      |           | 4                 | 0.60923                              |        |
| 3                                           | 0.76657      |           | 3                 | 0.41332                              |        |
| 2                                           | 0.55363      |           | 2                 | 0.22261                              |        |
| 1                                           | 0.29434      | Table 20  | 1                 | 0.08366<br>Wilson Consulting Service | s. LL( |

WP-2: DCW\_Statistical Sampling in a Production Process 12/23/04 Pa

**Shipping Audits** 

#### **Stockroom Audits**

#### **Stockroom Audits** n = 100 and p = 0.036 $P(X \leq c)$ С 1.00000 15 12 0.99994 10 0.99902 9 0.99669 0.98982 8 0.97182 7 0.93036 6 5 0.84769 0.51288 3 1 0.12105

| Stock Room Audits |              |  |  |  |  |
|-------------------|--------------|--|--|--|--|
| n =175 an         | p = 0.036    |  |  |  |  |
| С                 | $P(X \le c)$ |  |  |  |  |
| 15                | 0.99935      |  |  |  |  |
| 12                | 0.98877      |  |  |  |  |
| 10                | 0.94708      |  |  |  |  |
| 9                 | 0.89781      |  |  |  |  |
| 8                 | 0.81833      |  |  |  |  |
| 7                 | 0.70362      |  |  |  |  |
| 6                 | 0.55737      |  |  |  |  |
| 5                 | 0.39514      |  |  |  |  |
| 3                 | 0.12179      |  |  |  |  |
| 1                 | 0.01232      |  |  |  |  |

Table 21

| Stockroom Audits |                         | Stockroo | om Audits |                   |                        |
|------------------|-------------------------|----------|-----------|-------------------|------------------------|
| n = 150          | n = 150 and $p = 0.036$ |          | n = 200 a | p = 0.036         |                        |
| <u> </u>         | $P(X \le c)$            | -        | С         | $P(X \le c)$      |                        |
| 15               | 0.99989                 |          | 15        | 0.99741           |                        |
| 12               | 0.99683                 |          | 12        | 0.96996           |                        |
| 10               | 0.97965                 |          | 10        | 0.89064           |                        |
| 9                | 0.95443                 |          | 9         | 0.81322           |                        |
| 8                | 0.90652                 |          | 8         | 0.70466           |                        |
| 7                | 0.82522                 |          | 7         | 0.56841           |                        |
| 6                | 0.70342                 |          | 6         | 0.41717           |                        |
| 5                | 0.54487                 |          | 5         | 0.27104           |                        |
| 3                | 0.20809                 |          | 3         | 0.06840           |                        |
| 1                | 0.02699                 | Table 22 | 1         | 0.00554 Wilson Co | nsulting Services, LLC |

WP-2: DCW\_Statistical Sampling in a Production Process 12/23/04

Page 22- 25

# **OC Curves**

## **5.0 Operating Characteristic (OC) Curves**

As the acceptance number c is reduced from 5, 4, 3, 2, 1, etc., the consumer's risk (Type II error) is increased and a Type 1 error (producer's risk) is reduced. The converse is true, i.e., if Type II risk is reduced then the Type I increases. The objective should be to reach a balance on the acceptable number as to minimize both risks.

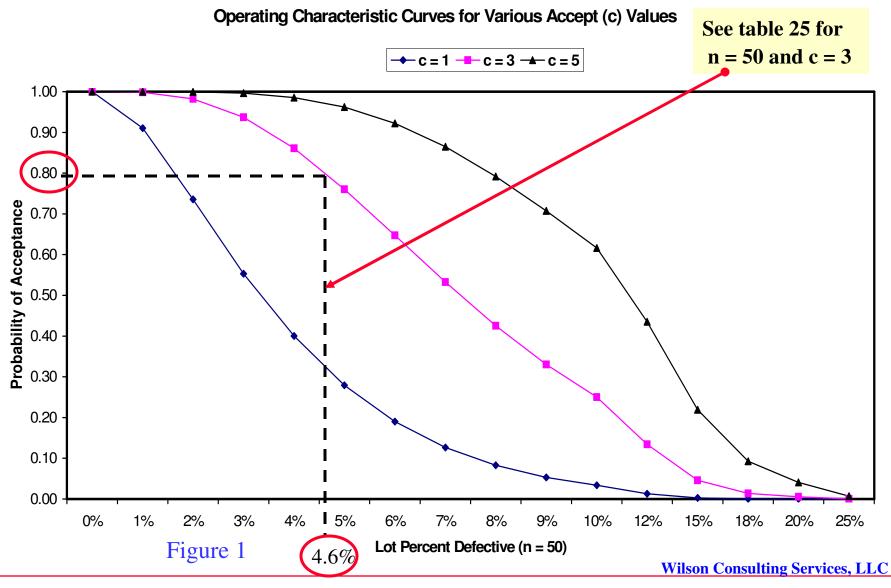
|                               | Various P     |               |              |                       |
|-------------------------------|---------------|---------------|--------------|-----------------------|
| Lot percent lot defective (p) | $P(X \leq 1)$ | $P(X \leq 3)$ | $P(X \le 5)$ |                       |
| 0.00                          | 1.0000        | 1.0000        | 1.0000       |                       |
| 0.01                          | 0.9105        | 0.9984        | 0.9999       |                       |
| 0.02                          | 0.7358        | 0.9822        | 0.9995       |                       |
| 0.03                          | 0.5530        | 0.9372        | 0.9963       |                       |
| 0.04                          | 0.4004        | 0.8609        | 0.9856       |                       |
| 0.05                          | 0.2794        | 0.7604        | 0.9622       |                       |
| 0.06                          | 0.1900        | 0.6473        | 0.9223       |                       |
| 0.07                          | 0.1265        | 0.5327        | 0.8650       |                       |
| 0.08                          | 0.0827        | 0.4253        | 0.7919       |                       |
| 0.09                          | 0.0532        | 0.3303        | 0.7072       |                       |
| 0.10                          | 0.0339        | 0.2503        | 0.6162       |                       |
| 0.12                          | 0.0131        | 0.1345        | 0.4353       |                       |
| 0.15                          | 0.0029        | 0.0460        | 0.2193       |                       |
| 0.18                          | 0.0006        | 0.0137        | 0.0928       |                       |
| 0.20                          | 0.0002        | 0.0056        | 0.0408       |                       |
| 0.25                          | 0.0000        | 0.0005        | 0.0070       |                       |
|                               | Table 23      |               | Wilson Co    | onsulting Services, L |

# **OC Curves – cont'd**

## Tables of various sample sizes of OC curves – cont'd

The information in these abbreviated tables were derived from Minitab and represents the OC curves concept. Hence: defect rate decreases as the probability of acceptance increases. Defect: c = 0
Probability of Acceptance

| Sample Size | 0.10    | 0.80   | 0.90   | 0.95   |
|-------------|---------|--------|--------|--------|
| 10          | 20.5680 | 2.2068 | 1.0490 | 0.5117 |
| 25          | 8.7990  | 0.8870 | 0.4206 | 0.2050 |
| 50          | 4.5008  | 0.4453 | 0.2105 | 0.1025 |
| 100         | 2.2763  | 0.2229 | 0.1054 | 0.0513 |
| 500         | 0.4595  | 0.0446 | 0.0211 | 0.0103 |
| 1000        | 0.2300  | 0.0223 | 0.0105 | 0.0051 |
| 5000        | 0.0461  | 0.0045 | 0.0021 | 0.0010 |
| 10000       | 0.0230  | 0.0022 | 0.0011 | 0.0005 |


Table 24

| Defect: c = 3 | Probability of Acceptance |          |         |                                 |
|---------------|---------------------------|----------|---------|---------------------------------|
| Sample Size   | 0.10                      | 0.80     | 0.90    | 0.95                            |
| 10            | 33.6850                   | 23.9450  | 18.7570 | 15.0030                         |
| 25            | 14.6868                   | 9.3259   | 7.1670  | 5.6570                          |
| 50            | 7.5590                    | 4.6280   | 3.5348  | 2.7788                          |
| 100           | 3.8340                    | 2.3060   | 1.7559  | 1.3777                          |
| 500           | 0.7757                    | 0.4597   | 0.3494  | 0.2738                          |
| 1000          | 0.3885                    | 0.2298   | 0.1746  | 0.1368                          |
| 5000          | 0.0778                    | 0.0459   | 0.0349  | 0.0273                          |
| 10000         | 0.0389                    | 0.0230   | 0.0175  | 0.0137                          |
|               |                           | Table 25 |         | Wilson Consulting Services, LLC |

Page 24-25

# **OC Curves – cont'd**

## **Graph of OC Curves from table 23**

